An Experimental Comparison of Fixed and Trained Fusion Rules for Crisp Classifier Outputs

نویسندگان

  • Fabio Roli
  • Sarunas Raudys
  • Gian Luca Marcialis
چکیده

At present, fixed rules for classifier combination are the most used and widely investigated ones, while the study and application of trained rules has received much less attention. Therefore, pros and cons of fixed and trained rules are only partially known even if one focuses on crisp classifier outputs. In this paper, we report the results of an experimental comparison of well-known fixed and trained rules for crisp classifier outputs. Reported experiments allow one draw some preliminary conclusions about comparative advantages of fixed and trained fusion rules.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Experimental Comparison of Classifier Fusion Rules for Multimodal Personal Identity Verification Systems

In this paper, an experimental comparison between fixed and trained fusion rules for multimodal personal identity verification is reported. We focused on the behaviour of the considered fusion methods for ensembles of classifiers exhibiting significantly different performance, as this is one of the main characteristics of multimodal biometrics systems. The experiments were carried out on the XM...

متن کامل

Trainable fusion rules. I. Large sample size case

A wide selection of standard statistical pattern classification algorithms can be applied as trainable fusion rules while designing neural network ensembles. A focus of the present two-part paper is finite sample effects: the complexity of base classifiers and fusion rules; the type of outputs provided by experts to the fusion rule; non-linearity of the fusion rule; degradation of experts and t...

متن کامل

Optimum Ensemble Classification for Fully Polarimetric SAR Data Using Global-Local Classification Approach

In this paper, a proposed ensemble classification for fully polarimetric synthetic aperture radar (PolSAR) data using a global-local classification approach is presented. In the first step, to perform the global classification, the training feature space is divided into a specified number of clusters. In the next step to carry out the local classification over each of these clusters, which cont...

متن کامل

Performance Analysis and Comparison of Linear Combiners for Classifier Fusion

In this paper, we report a theoretical and experimental comparison between two widely used combination rules for classifier fusion: simple average and weighted average of classifiers outputs. We analyse the conditions which affect the difference between the performance of simple and weighted averaging and discuss the relation between these conditions and the concept of classifiers’ “imbalance”....

متن کامل

Fixed and Trained Combiners for Fusion of Imbalanced Pattern Classifiers

In the past decade, several rules for fusion of pattern classifiers’ outputs have been proposed. Although imbalanced classifiers, that is, classifiers exhibiting very different accuracy, are used in many practical applications (e.g., multimodal biometrics for personal identity verification), the conditions of classifiers’ imbalance under which a given rule can significantly outperform another o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002